Scope-Aware Classification: Taking the Hierarchical Private/Shared Data Classification to the Next Level
نویسندگان
چکیده
Hierarchical techniques are commonplace in ameliorating the bottlenecks, such as cache coherence, in the design of scalable multi/manycores. Furthermore, there have been proposals to simplify the coherence based on the data-race-free semantics of the software and private/shared data classification, where cores self-invalidate their shared data upon synchronizations. However, naive private/shared data classification in the hierarchies nullifies such optimizations by increasing the amount of data misclassified as shared and therefore being needlessly self-invalidated. We introduce a private/shared data classification approach for hierarchical clusters, where a datum is concurrently classified as private and shared with respect to different classification scopes. Such scope-aware classification eliminates the needless self-invalidation of the valid data at synchronizations, resulting in a coherence scheme that reduces the average network traffic and execution time by 30% and 5%, respectively.
منابع مشابه
Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملPredicting the Next State of Traffic by Data Mining Classification Techniques
Traffic prediction systems can play an essential role in intelligent transportation systems (ITS). Prediction and patterns comprehensibility of traffic characteristic parameters such as average speed, flow, and travel time could be beneficiary both in advanced traveler information systems (ATIS) and in ITS traffic control systems. However, due to their complex nonlinear patterns, these systems ...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملAn Assessment of Factors that Impact Government Oversight of Public-Private Partnership Contracts of the National Iranian Gas Company
One of success factors of public-private partnership contracts is the effective public supervision on their implementation, including standards to be observed by the private party to the partnership. In other words, a key element in using private sector’s potential is defining activity standards and precise supervision of their implementation. In this research we identify the factors that impa...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کامل